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Abstract

Environmental accounting techniques are intended to capture important environmental costs
and benefits that are often overlooked in standard accounting practices. Environmental accounting
methods themselves often ignore or inadequately represent large but highly uncertain environmental
costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demon-
strated for the assessment of such highly uncertain environmental and contingent costs. The pre-
dictive Bayesian approach presented generates probability distributions for the quantity of interest
(rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive
Bayesian model, extended to represent contingent costs, is described and used to evaluate whether
a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability
and uncertainty (due to lack of information) in transformer accident frequency and severity are
assessed simultaneously using a combination of historical accident data, engineering model-based
cost estimates, and subjective judgement. Model results are compared using several different risk
measures. Use of the model for incorporation of environmental risk management into a company’s
overall risk management strategy is discussed. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Environmental accounting; Risk assessment; Risk management; Project evaluation; Bayesian
statistics

1. Introduction

Business and environmental managers in industry are facing increasing demands for en-
vironmental performance from regulators, consumers, and their shareholders. At the same
time, marketplace competition more and more frequently emphasizes the environmental
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performance of firms and products. Environmental and financial information required to
meet such expectations while maximizing shareholder value is unavailable in many firms.
This need for accurate and consistent cost information for environmental projects has gen-
erated an interest by business in what is known as “environmental” or “full cost” accounting
[1]. Regulators and environmental activists are also supportive of environmental accounting
because they believe that many environmental costs are hidden or under-valued and thus
see full cost accounting as a way to “green” industry by appealing to the corporate profit
motive.

This paper addresses two types of environmental cost that are often neglected even within
full cost accounting programs: the highly uncertain costs associated with environmental
accidents and secondary costs contingent upon the occurrence of accidents such as third
party liability, disruption of production due to interruption of the supply chain, and increased
insurance rates. Interest in characterizing certain contingent costs is certainly not new, for
example, liability has been studied for decades. However, contingent environmental costs
often represent an extreme example because the costs can be very large and uncertain,
and their occurrence very infrequent. Because of their highly uncertain nature, many firms
neglect or misrepresent contingent environmental costs when making business decisions,
leading to capital investments, design choices, and production decisions that are not in the
best interests of the firm or the environment [2].

The complicated physical processes that underlie environmental accidents and their in-
frequent occurrence make environmental risk difficult to assess quantitatively. Thus in most
companies, environmental risk is managed through command-and-control measures, in the
form of procedural manuals and rules, that are overseen by the department that deals with
environmental, health, and safety issues, rather than the financial officers that oversee other
financial risks. By organizationally segregating environmental risk management and rely-
ing too heavily on formulaic measures, firms reduce their flexibility and ability to make
informed risk management decisions. For example, firms often buy insurance against en-
vironmental liability at the corporate level, but do not charge operating managers for their
unit’s portion of the premiums. The unit and line managers are thus poorly informed about
the costs of environmental risks within their units, and are also limited in their ability to
creatively manage those risks by inflexible risk management procedures.

This paper describes and demonstrates a new Monte Carlo spreadsheet implementation of
a predictive Bayesian model of project net present value proposed previously [3]. The model
has been recognized as general, not data intensive (inputs may include professional judgment
as well as available data), and in need of computer implementation [4]. The implementation
presented addresses this need, facilitating use of the model by technical professionals to
assess variable and uncertain contingencies such as those due to environmental accidents.
The approach allows characterization of environmental risks so that they can be better
integrated into a company’s overall risk management approaches.

Use of the spreadsheet model is demonstrated in this paper for the evaluation of the choice
by a large industrial firm of whether or not to implement an accelerated PCB transformer
phase-out. Variability in frequency and cost of PCB transformer accidents and their sec-
ondary effects are accounted for on the basis of historical, engineering model-based, and
subjective information. The case study was abstracted from a series of site visits to a large
electronics manufacturing firm located in Oklahoma City, OK. After developing the model
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for the PCB transformer replacement case, alternate methods of presenting the probabilistic
net present value results to decision makers are discussed and compared.

2. Spreadsheet model

Discrete, random accidents, such as PCB transformer spills and fires, can be represented
by a predictive Bayesian compound Poisson model to assess cumulative damages over an
assumed planning period [3]. In order to provide sophisticated but non-expert users uncom-
plicated and flexible access to the compound Poisson model, a Monte Carlo spreadsheet
implementation of the model has been developed (referred to here as “NPVRISK”). The
NPVRISK modeling tool is built around a Monte Carlo simulation module that the user
connects with probabilistic models, such as the compound Poisson, selected from a library
of available models. Input parameters for the probabilistic models are entered on NPVRISK
worksheets provided for each model. The input worksheets contain graphical representations
of the component probability distributions (e.g. distributions for accident size and frequency)
along with tools and heuristic rules that facilitate estimation of distribution parameters from
data and subjective judgment [3]. When the NPVRISK model is executed, the Monte Carlo
simulation randomly samples the component distributions during each replication, and the
samples are then combined resulting in a simulated distribution for the model output.

In the compound Poisson model for transformer spills, NPVRISK worksheets are used
to develop probability distributions for the number of transformer spills occurring within a
planning period, as well as for the direct damages per spill. In a similar manner, distributions
for the number of transformer fires per period and damages per fire are obtained. Model
worksheets are also prepared that develop distributions for the costs of contingent secondary
impacts of transformer spills and fires. During Monte Carlo simulation these distributions are
randomly sampled and each set of samples combined, resulting in a simulated distribution
of the total damages over the analysis period due to transformer spills and fires, and their
secondary impacts. The distribution of total costs in one period is then repeatedly discounted
to represent distribution of total costs in each future year that the transformer will be in
service. The cost distributions for all years are convolved numerically (along with cost
distributions representing eventual replacement by a non-PCB transformer) to produce a
distribution of total costs over one transformer’s expected lifetime.

The component distributions used to model the financial risk of PCB transformer spills
and fires are developed in the following two sections.

2.1. Incident frequency distribution

Assuming that the mean frequency of PCB transformer accidents over the period is
constant, that the number of accidents is small, and that the numbers of accidents in all
subintervals of time are independent, the Poisson distribution gives probabilities for the
number of transformer accidents per period. However, transformer accidents are low prob-
ability events for which data are limited and available data may not reflect the conditions of
the case to be evaluated. To alleviate these data requirements and incorporate expert knowl-
edge such as the investigator’s degree of confidence that historical data reflect the system
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under investigation, Bayesian techniques can be used to form a predictive distribution with
a Poisson sampling distribution and a gamma prior [3]. The result is a predictive Bayesian
version of the negative binomial distribution expressed in terms of available information
[5] as follows:

p(n|α, β, n̄i , I ) = (n + α + I n̄i − 1)!(β + I )α+I n̄i

n!(α + I n̄i − 1)!(β + I + 1)n+α+I n̄i
(1)

wheren is the number of transformer accidents during the future period,α and β are
the parameters of the gamma prior distribution for the mean number of accidents,n̄i is the
average of available data, andI is the number of available data points (0≤ I ). This predictive
negative binomial distribution will be broader than the underlying Poisson distribution,
accounting for uncertainty in the parameters.

In the NPVRISK model, a Microsoft EXCEL® worksheet is provided that allows the
user to estimate input parameters for the negative binomial incident frequency distribution
using the guidelines suggested by Englehardt [3]. If multiple event frequencies are to be
modeled using the negative binomial distribution, this worksheet can be copied as many
times as needed. Negative binomial random variates are generated using the convolution
algorithm suggested by Law and Kelton [6] implemented as an EXCEL® macro in Visual
Basic for Applications (VBA) code. When called by the Monte Carlo simulation, the random
variate generation code draws input parameter values directly from the negative binomial
distribution worksheets.

2.2. Incident size distribution

Generally, incident size may be modeled with log-normal, Pareto I, and Pareto II dis-
tributions [7]. In analysis of transformer accidents, small PCB releases, such as the loss
of a small amount of transformer oil during regular maintenance or inspection, may be
decontaminated by on-site environmental, health and safety personnel at small cost. The
frequency of such small incidents is unknown, but not important in the estimation of total
cost of accidents. In such cases, the Pareto I distribution which models incidents greater
than some minimum size of interest is appropriate. However, it may be difficult to specify
the scale and location parameters of the Pareto I distribution based on limited available data
that may not accurately reflect current circumstances. In this case incident size is modeled
using a predictive Bayesian version of the Pareto I distribution [3] as follows:

fZ(z|Z0, γ, θ, J, ln(zj )) = (J + γ )(θ + J ln(zj ) − J ln Z0)
J+γ

z(ln(z) + θ + J ln(zj ) − (J + 1)ln Z0)J+γ+1
(2)

wherez is the size of transformer accident damage,Z0 the assumed minimum accident size
of interest,γ andθ are the parameters of the prior distribution for the scale parameter,φ,
of the underlying Pareto I sampling distribution,ln(zj ) the average of the natural log of the
data, andJ is the number of available data points (0≤ J ). Z0 is the location parameter in
the sense that varyingZ0 shifts the distribution along a logarithmic scale of incident size.

Small values of the scale parameter,φ, produce Pareto distributions with long tails (in-
creased probability of large events). However, for values ofφ less than 1.0 the distribution
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mean is infinite. In practice, there are physical limits on maximum accident size and thus
it is desirable to censor the predictive Bayesian Pareto distribution (Eq. (2)). Analytically,
the censored distribution isfZ(z)/FZ(Zmax), whereZmax is the maximum damage that could
result from one accident, andFZ(Zmax) is the cumulative distribution function (CDF) eval-
uated atZmax. Within the Monte Carlo implementation, the Pareto distribution is censored
by simply sampling the distribution until a variate less thanZmax is drawn, discarding those
that exceedZmax.

Using the inverse transform method, an equation for a Bayesian Pareto random variate
is derived as

Z = exp

[
θ + J ln(zj ) − J ln Z0

(1 − U)1/(J+γ )
− θ − J ln(zj ) + (J + 1)ln Z0

]
(3)

whereU is an IID U(0, 1) random variate, and other symbols are as previously defined.
Eq. (3) is implemented as an EXCEL® macro in the NPVRISK model and used in the
Monte Carlo simulation.

Formulation of the NPVRISK model as a Monte Carlo simulation, although adding com-
putational burden, provides flexibility and allows the model to be quite general. Tasks that
often complicate analytical modeling of extreme event probability, such as discounting, cen-
soring, convolution of censored distributions and convolution of discrete distributions with
different bin sizes, are greatly simplified in a Monte Carlo implementation. This flexibility
allows the Monte Carlo-based NPVRISK model to address a wide range of benefit–risk
analyses without the need for writing computer code or for analytical computation, thereby
making analyses of the risk of extreme events more accessible.

3. Financial risk assessment of PCB transformers

The decision evaluated is whether to replace 5000 kV A PCB transformers with a sili-
con fluid model now, at an expected cost of US$ 25,000 each, or to wait until the end of
transformers’ expected lifetimes, on an average 15 years from now. Although the replace-
ment cost for the transformer is substantial, the costs thatcould result from a transformer
fire or spill, such as clean-up, lost production, and lawsuits brought by third parties, are
uncertain but possibly very large. The financial risks of two types of acute PCB transformer
accident, transformer fire and transformer spill, are assessed. With either type of event,
in addition to the direct cost of damage and clean-up there are possible secondary effects
such as increased insurance premiums, third party litigation, losses due to plant shutdown,
and with extended shutdowns the costs associated with disruption of production at other
facilities due interruption of the supply chain. To simplify the example considered here,
the firm is taken to be self-insured and there are alternate suppliers available so the only
secondary cost considered is that of third party litigation. Other contingent costs, such as
lost production due to interruption of the supply chain, can be handled in the same manner
that third party litigation is in the example presented.

The financial risk posed by the continued use of transformers containing PCBs is quanti-
tatively assessed using the compound Poisson model described previously. Historical data
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Table 1
Parameters of distributions of number of transformer spills and fires (Eq. (1))

Transformer spill Transformer fire

α 1.0 1.0
β 404.6 4861.1
I 0 0
n̄i 0 0

used here are the industrial transformer accidents reported in the Emergency Response Noti-
fication System (ERNS) database between 1987 and 1994, as well as an internal database of
transformer accident reports. The ERNS database contains 5034 transformer related entries
for this period, of these a much smaller number were consistent with an industrial setting.
There were 854 accidental transformer spills reported that were deemed consistent with this
study. Similarly, there were 72 transformer fires reported that were applicable.

The ERNS data were used to choose the parameters of the gamma prior for the mean
number of transformer accidents (both spills and fires) in Eq. (1). Using the number of
transformer events in the 7-year period represented by the data and based on an assumed
population of 50,000 transformers, the probability of transformer spill and fire per trans-
former year were estimated to be 0.00247 and 0.00021, respectively. These probabilities
represent estimates of the means of the prior distributions for the Poisson distribution pa-
rameterλ. With estimates of only the means available the appropriate choice ofα for both
distributions is 1 (i.e. an exponential prior distribution). The resulting parameters of Eq. (1)
for both transformer spills and fires are presented in Table 1. The values ofβ have been
found to yield gamma priors with the desired means. The number of data are taken to be
zero in both cases.

The distributions for event size cannot be found directly from the ERNS data because
these data include physical descriptions of the transformer events such as quantities of oil
spilled and location, but do not contain cost information. Therefore, the ERNS data were
combined with an engineering-based cost model to determine damages. The engineering
cost model estimates costs of removal, transportation and disposal of PCB laden oil and oil
laden soil and materials.

3.1. Engineering cost model

The cost model consists of a set of cost functions derived from historical accident cost
data and cost estimates obtained from local hazardous material response contractors. Cost
functions are derived for three categories of transformer accident: spills with PCB concen-
trations below 500 ppm, spills with concentrations above 500 ppm PCB, and transformer
fires. Spills of less than 454 g (1 lb) of PCB are assumed to be decontaminated by on-site
environmental, health and safety personnel for less than US$ 1000 and are thus below the
minimum size of interest.

Cost estimates were obtained for a typical transformer installed on a concrete pad, po-
sitioned on an asphalt apron that is underlain by soil. For each category of transformer
accident, cost estimates were obtained from local hazardous material response contractors
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Table 2
Cost assumptions and component costs used in accident cost estimates for cost model

Cost category Value

Labor (US$/h)
Technician 70
Supervisor 85
Chemist 100

Safety equipment (US$ per man day)
Suits, gloves, respirators, decontamination 70

Waste disposal (US$/t)
Landfill 100a

Incineration 560b

Hazardous waste transport (US$ per loaded mile)
Bulk waste 3.00
Containerized waste 5.00

a Safety-Kleen, Grassy Mountain, Grayback Mountain Facility, Salt Lake City, UT.
b Safety-Kleen, Aragonite, Inc., Salt Lake City, UT.

for accidents involving 1, 10, 100, 500, and 1000 gal of PCB-laden oil. The amount of mate-
rial removed is assumed to be a linear function of the quantity of PCB oil released, derived
from empirical accident data. Cost assumptions used in forming the cost estimates are pre-
sented in Table 2. The cost estimates were combined with empirical cost data from accident
reports collected by local agencies, and cost functions were formed by fitting piece-wise
linear functions to the combined empirical and estimated cost data.

The cost model assumes that PCB spill and fire cleanup is performed according to US
EPA PCB Spill Cleanup and Reporting standards (40 CFR 761.120-135). Spills with PCB
concentrations less than 500 ppm and of less than 454 g (1 lb) of PCB do not require notifi-
cation of the National Response Center and the spill boundary does not need to be verified
by sampling and analysis. Within 48 h all soil in the spill area plus a one-lateral-foot buffer
zone must be excavated and backfilled with clean soil. Solid surfaces must be double
washed/rinsed. Decontamination can be performed by specially trained personnel within
the firm.

When spills of concentrations greater than 500 ppm or of more than 454 g (1 lb) of PCB
occur, the National Response Center must be notified immediately. The cleanup of fluid from
hard surfaces and the removal of contaminated soil and porous material must be initiated
within 24 h. Materials such as soil, asphalt, wood, cement, and concrete are regarded as
porous and are assumed to absorb PCBs and must be removed. The spill boundary must
be verified by sampling and analysis. Solid, impenetrable surfaces such as metals may be
decontaminated by a double wash/rinse. All decontamination must verified by sampling and
analysis. All soils and impenetrable surfaces must be remediated to background levels (i.e.
detection limits). All concentrated soils, solvents, rags, and other materials resulting from
the cleanup must be properly stored, labeled, and disposed of as PCB or PCB-contaminated
materials. All bulk and liquid waste materials with PCB concentrations greater than 500 ppm
must be incinerated in an approved facility. Bulk materials with PCB concentrations less
than 500 ppm may be disposed in an approved hazardous waste landfill.



106 R.P. Anex, J.D. Englehardt / Journal of Hazardous Materials A82 (2001) 99–112

Fig. 1. Empirical and Pareto I probability densities for damage caused by individual industrial transformer spills
between 1987 and 1994.

The cost functions were used to estimate the costs of site remediation and hazardous
waste disposal for the transformer accidents in the ERNS database based on the quantities
and concentrations of PCBs reported. If PCB concentration associated with an accident was
not reported in the ERNS database, high PCB concentration (greater than 500 ppm) was
assumed. All PCB waste from transformer fires were assumed to be greater than 500 ppm
PCB.

The historical cost data derived from the ERNS database using the cost model were com-
bined with empirical transformer accident cost data and this combined database was used
to form the Pareto I priors for both transformer spills and fires. An example of the discrete
transformer spill probability densities derived from cost data and the corresponding Pareto I
distribution is shown in Fig. 1. The empirical density data in Fig. 1 were calculated from the
spill cost data by dividing the number of spills in each cost bin (e.g. US$ 1000–10,000) by
the total number spills and the bin width. In Fig. 1 these empirical probability densities are
plotted (versus the geometric mean of bin size) on a log–log scale. The slope of the log–log
plot of the Pareto I distribution shown in Fig. 1 provides an estimate of the mean of the
prior distribution for the Pareto scale parameter,φ, for transformer spills. A similar process
is followed to estimate the parameters of the Pareto transformer fire cost distribution.

Having estimated the mean Pareto scale parameters for transformer spills and fires,
gamma prior distributions are formed to represent the uncertainty associated with the Pareto
scale parameters. As with event number, an exponential gamma prior is chosen to reflect
limited information and confidence in the estimated Pareto scale parameters. Choosing a
minimum event size of US$ 1000 (the minimum cost of response by a hazardous waste
team) and a maximum event size of US$ 50 million, all of the parameters of the marginal
predictive event size distributions (Eq. (2)) have been determined and appear in Table 3.

The cost distribution that remains to be estimated is that resulting from lawsuits by
parties injured or harmed by transformer accidents. These costs are contingent upon event
occurrence and severity and there is very limited information available regarding such
third party liability in transformer accidents. However, some information about third party
liability costs is available from legal service companies such as Jury Verdict Research,
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Table 3
Parameters of distributions of transformer spill and fire event size (Eq. (2))

Transformer spill Transformer fire

Z0 1000 1000
γ 1 1
θ 1 3.57
J 1 1
ln(zj ) 7.91 10.48

Inc. Insurance claims have been found to have distributions ranging from the Pareto to the
somewhat thinner-tailed log-normal distribution [8,9]. Of these distributions the Pareto is
the most conservative, having relatively higher probabilities of extremely large incidents. In
that sense, the Pareto is the most objective (assumes the least) by the principle of maximum
entropy [10]. Therefore, in the absence of information to the contrary, the Pareto is assumed.

Truncating the Pareto at a maximum settlement size of US$ 50 million produces a fi-
nite mean and adds realism, while affecting the probabilities minimally. The data available
from Jury Verdict Research, Inc. are the mean costs of third party liability for both trans-
former spills and fires [11], which can be used to estimate the Pareto scale parameter,φ,
in the equation for the mean of a truncated Pareto distribution [E(z) = φZ0Zmax(Z

φ−1
0 −

Z
φ−1
max)]/[(1 − φ)(Z

φ
max − Z

φ
0 )] [12]. Assuming a value ofγ = 3 in Eq. (2), representing

relatively low confidence,θ is then estimated as 3/φ. With mean third party liability costs
of US$ 945,000 and 3,700,000 for spills and fires, respectively, and choosing a minimum
liability of US$ 1000, the parameters of the marginal predictive liability cost distributions
(Eq. (2)) are those shown in Table 4.

The compound Poisson distributions for damages resulting from transformer spills and
fires and the distributions of third party lawsuit costs associated with a transformer accident
are to be combined to produce distributions of total accident costs per transformer year.
Although these distributions can be combined by numerical convolution, results are highly
sensitive to model resolution due to the extreme skewness of the Pareto distribution and the
contingent nature of third party liability. This difficulty can be avoided by combining the
distributions through Monte Carlo simulation, as was done for the example presented here
using the Bayesian benefit–risk model [13].

The resulting probability distribution represents the probability of different levels of total
costs per transformer year due to transformer spill, fire, and third party liability resulting

Table 4
Parameters of distributions of third party liability resulting from transformer spills and fires (Eq. (2))

Transformer spill Transformer fire

Z0 1000 1000
γ 3 3
θ 10.46 62.34
J 0 0
ln(zj ) 0 0
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from transformer spills and fires. Evaluation of the distribution of total costs over time of
not replacing the transformers requires computing the possible damages over the 15 years
of remaining transformer life plus the perpetual cost of maintaining transformer service
from then on. To do this the distribution of damages per transformer year for each of the
15 years is produced by discounting the current year distribution based on a real discount
rate of 5%. The 15 resulting distributions are then convolved numerically to produce the
probability distribution of total damages over the 15 years. This is then convolved with a
distribution of the costs of maintaining non-PCB transformer service in perpetuity.

The delay-replacement option is to be compared with replacing the transformer im-
mediately and then maintaining transformer service perpetually. The cost of replacement
transformers is based on industry estimates provided by Westinghouse, Inc. The cost to
purchase, install and maintain a 5000 kV A transformer with an assumed lifetime of 30
years is taken to be normally distributed with a mean of US$ 25,000 and a variance of US$
2500. The distribution of the cost to provide transformer service perpetually is found by
convolving a series of such normal distributions with proper discounting. The series may
be terminated when discounting makes any future costs negligible (beyond 60 years in this
case).

4. Results

The probability distributions for each alternative (to replace PCB transformers imme-
diately and to not replace until end of service life) are shown on a linear scale in Fig. 2.
The expected cost of the replacement option is US$ 28,554, while the expected cost of the
delay-replacement option is US$ 58,251. These are the average costs a firm could expect to
face if it were to make these choices a great many times. Although these simple expected
cost values seem appealing, they are not the correct measures to use in comparing risky
projects the impacts of which occur over many years [14]. The proper way to evaluate such
projects depends on the risk associated with the project and the risk attitudes of the decision
makers.

The risky nature of the delay-replacement option is more clearly seen in Fig. 3 where
the probability distributions for each alternative are plotted on a log–log scale. The most
prominent feature of Fig. 3 is the very long “tail” of the delay-replacement option. This
reflects the improbable but possible occurrence of acute events with very large costs. How
a firm will view this information will depend on how decision makers view the relative
importance of small and large costs (i.e. their risk attitudes). A firm that is risk seeking
and short of cash may wish to “take its chances” for a while because the chance of a large
accident is very small. However, a firm that is less comfortable with risk and more concerned
with ensuring the continuation of the firm, may be unwilling to take the same gamble.

These examples demonstrate the difficulty with using expected value (cost) in decision
making. The expected cost measure reduces the cost and probability information down to
a single number and makes it impossible for firms to distinguish the risk characteristics of
a decision. (The expected cost is computed as the sum over all possible costs of the costs
multiplied by their corresponding probabilities.) The expected cost approach thus ignores
the amount of risk associated with an alternative and the risk attitudes of the decision maker
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Fig. 2. Probability density functions for total cost of transformer replacement options.

Table 5
Comparison of the risk of the management options by several measures

Risk measure Management option

Replacement Delay

Expected cost (US$) 28554 58251
Standard deviation (US$) 2525 629030
5% exceedence cost (US$) 32700 49000
Conditional expected cost (α = 0.95) (US$) 33692 410710

by assuming that the value that a decision maker applies to a benefit (cost), as defined by his
utility function, is linearly related to the magnitude of the benefit (cost). On the contrary, it
is widely accepted that for most individuals the relationship between value and monetary
worth is highly non-linear [15,16]. This is particularly true in the realm of losses [17].

One possible solution is to present decision makers with a probability distribution such
as that in Fig. 3. However, few managers are likely to be prepared to use information in this
form. Alternatively, there are summary measures other than expected (mean) cost that can
be used to convey risk information. Table 5 presents several such measures. The traditional
measure of variation from the mean is variance or standard deviation, but this measure
is rather blunt and gives little information regarding the shape or length of the tail of a
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Fig. 3. Probability density functions for total cost of transformer replacement options (log–log scale).

distribution. Another measure is an “exceedence cost.” The exceedence cost is the cost
associated with a certain exceedence probability, where the exceedence probability of a
cost valuex is defined as the probability thatX is observed to be greater thanx and is equal
to one minus the CDF evaluated atx. The 5% exceedence costs shown in Table 5 illustrate
that with 95% probability the cost of the replacement option will be less than US$ 32,700,
while the similar measure for the delay option is US$ 49,000. The 5% exceedence cost for
the delay option is less than the expected cost, indicating that this distribution has a long
tail.

Although the exceedence cost measure reflects the length of the tail of a distribution, it
gives little information regarding the shape of the tail. The conditional expected cost, gives
more information about the shape of the tail of a distribution since it is the cost that is
expected if cost is above some particular harm levelβ [18]. In the example, the exceedence
probability is taken to be 0.05, soβ is the 95th percentile. The conditional expected cost
is the expected cost ofX, given thatx is greater thanβ. As shown in Table 5, if the cost
exceeds the 95th percentile (the 5% exceedence cost) the expected cost of the replacement
option is US$ 33,692, while that of the delay option is US$ 410,710. These simple measures
clearly indicate the high risk of the delay option relative to the replacement option and are
generally understandable by decision makers such as corporate managers. A measure such
as conditional expected cost allows a manager to take his organization’s financial situation
and risk attitudes into account, and make more informed decisions.
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Although the methods described allow firms to make more informed decisions about
highly uncertain environmental costs, there are several factors that discourage firms from
using such methods. The first is that use of models such as the one presented here is not with-
out cost. Although the time cost of using this model is not high, it requires an expertise that
many firms do not have internally, particularly small- and medium-size firms. The second
and perhaps more important deterrent to use is that disclosure requirements under Securities
and Exchange Commission (SEC) rules require firms to report financial liability informa-
tion to shareholders [19]. If not quantified, extreme events with very low probabilities, such
as those addressed here can be considered negligible and thus not be incorporated in firms’
financial reporting. Third and perhaps equally influential to a firm’s use of risk assessment
in planning is that documentation by the firm of knowledge of potential environmental and
health risks can be used in court against the firm should an accident occur. This “ignorance
is bliss” aspect of precedents in health litigation is a disincentive to economic analysis of
health and environmental risks by industry.

5. Conclusion

Despite the barriers to use, the model presented in this paper provides analysts with a
way to combine historical data, engineering model-based data, and subjective knowledge to
derive quantitative risk assessment information about highly uncertain environmental lia-
bilities. The model allows analysts to quantitatively describe environmental and contingent
costs, even when information is severely limited. By quantifying all available information,
the NPVRISK model allows firms to make informed decisions that accurately reflect their
willingness to accept risk. The model also allows highly uncertain and contingent environ-
mental costs to be included in full cost accounting programs, leading to capital investments,
design choices, and production decisions that are in the best interests of the firm and the
environment.

Use of the Monte Carlo simulation approach in a spreadsheet environment makes the
model highly flexible and easy to use. Monte Carlo simulation greatly simplifies modeling
of complicated real-world risk characteristics such as censored distributions and proba-
bilistic contingent costs (e.g. lawsuits and production losses due to interruption of the
supply-chain). The flexible and general nature of the model makes it accessible to a broader
audience which should allow small- and medium-size firms to perform more sophisticated
environmental risk–benefit analyses and more correctly represent environmental risks in
their risk management and environmental accounting.
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